
60 The Delphi Magazine Issue 55

COM Corner:
COM+ Queued
Components
by Steve Teixeira

Delphi developers normally do
not have to be lectured on the

benefits of briefcase model appli-
cations. When MIDAS was intro-
duced in Delphi 3, the barrier of
entry was forever lowered for cre-
ating applications with the ability
to operate even when the client is
disconnected from the server.
Delphi developers quickly realised
the power of enabling their users
to work with their data in a discon-
nected, briefcase, model, embrac-
ing MIDAS and other technologies
that provide this capability. Rather
than having to write complicated
code to, for example, enable a
salesman to edit his customer
database on his laptop while on the
road and synchronize when he
gets back into the office, this func-
tionality is now easily accessible
by dropping a few components and
writing a few lines of code.

This is all really neat if you
happen to be data, but what to do if
you’re an object? As object
remoting technologies such as
DCOM, MTS/COM+ and CORBA
become easier to implement in our
tools, our reliance on such technol-
ogies increases. Consequently,
this reliance increases as we
employ object remoting technolo-
gies to build ever more complex
distributed apps. As a result, dis-
tributed component applications,
like data applications, also have
the need to function when
disconnected from servers.

Queued Components:
The Object Briefcase
COM+ queued components, pro-
vided in Windows 2000 Server,
answer this need. Based on
Microsoft Message Queue technol-
ogy, queued components provide
a means for COM+ clients to

asynchronously invoke methods
of COM+ server components. In
essence, this means that clients
can create instances of server
objects and invoke their methods
without regard to whether the
server can be accessed by the
client. COM+ manages this by stor-
ing the method invocations in a
queue and executing them at a
later time, when the server is
accessible. What’s more, the
server objects likewise have little
reason to know or care whether
their methods are being invoked
directly or via a COM+ queue. In
this article I will cover the essential
elements of working with COM+
queued components.

Figure 1 illustrates how queued
components are implemented
internally. When the client makes a
method call on a queued compo-
nent, that method call is captured
by the recorder, which packages up
the call and parameters and places
them into a queue. Since the client
has no knowledge that it is not
actually communicating with the
server, you can see that the
recorder serves as a sort of a proxy
for the server. The recorder knows
how to behave because it obtains
information on the server from its
type library and its configuration
and/or registration information.
The listener removes the message,
which contains the call informa-
tion, from the queue and passes it
on to the player.
Finally, the player
unpackages the call
information (along
with related informa-
tion, such as the
client’s security con-
text) and executes the
method call on the
server.

‘All this sounds cool,’ you might
be saying to yourself, ‘but I’ll bet
implementing it requires a degree
in a new variety of non-Newtonian
physics.’ If you did say that to
yourself, then you’re only half
right: it is cool, but it’s also very
easy to do, as you will soon see.

Why Queue Components?
Before jumping into implementa-
tion, however, I’d like to address
some of the specific reasons for
using queued components.

System Scalability
In a non-queued system, there will
be a finite number of server
objects capable of handling
requests from clients at any given
time. When all of these objects
become tied up handling client
calls, other incoming client calls
will be blocked until an object
finishes and again becomes
available. In a system having a
large number of simultaneous
transactions, this can seriously
limit the number of concurrent cli-
ents that can be serviced. Using
queues, the call always returns
immediately to the client after
being queued and played back to
servers in the servers’ own time.
This enables the system to handle
more concurrent transactions.

Scalability is also increased on
the back-end, because the client
doesn’t manage the lifetime of the
server. Rather than being active
while the client carries on with its
processing, a queued server only
needs to be active while calls are
being played back by the recorder.
Reducing the time a server needs
to remain in memory means that a
greater number of servers can be
activated over a given time with a
given amount of RAM.

➤ Figure 1

March 2000 The Delphi Magazine 61

Briefcase Model
As I mentioned, COM+ enables
queued components to behave in a
disconnected manner in much the
same way MIDAS does for data.
This enables clients to work with-
out being connected to their net-
work, and method calls to be
played back to the server when the
client connects up again.

Fail-Safety
If you are creating a mission-
critical application that requires a
high degree of availability, such as
an e-commerce storefront, the last
thing you want to happen is for the
system to go down because your
front end is having trouble commu-
nicating with server objects.
Queued components provide an
ideal safety net to prevent this
problem, because they will queue
method calls intended for servers
if the servers become unavailable
and play them back when the
server again comes online.

Load Scheduling
Rather than having your servers
work like rented mules in their
peak hours of activity and sit
nearly dormant during the rest of
the day, using queued components
you can spread processing
throughout the day to even the

workflow and place less demand
on your servers at any one time.

Creating A Server
There’s little difference between
creating a queued component and
creating a normal COM/COM+
component. The biggest adjust-
ment you will need to make is that
all methods on queued interfaces
must accept only in parameters
and must not make use of return
values. Of course, these limitations
make sense when you consider
that the client won’t be sitting
around waiting for the server to
return any values or out parame-
ters. Also, you will need to perform
a few extra steps in component
configuration at install-time.

To illustrate, I’ll create a Delphi
server that contains one COM+
class with one interface with one
method. To make life easier, I’ll get
started using the Automation
Object Wizard accessible via the
File | New... main menu item.
I call this object QTest, and the
wizard automatically names the
primary interface IQTest (don’t
worry, it’s easier than it sounds).
To the IQTest interface I add one
method, which is defined in the
type library editor as follows:

procedure SendText(Value:
WideString; Time: TDateTime)
[dispid $00000001]; safecall;

The idea is that this method takes
two parameters, the first a string
message and the second the time
on the client the method was
called. My implementation of this
method simply writes this infor-
mation, in addition to the time the
message was processed by the
server, to a log file I create called
c:\queue.txt. The implementation
file for this Automation object is
shown in Listing 1.

After the server has been cre-
ated, it needs to be installed into a
new COM+ application using either
the Component Services manage-
ment tool or the COM+ Administra-
tion Library API. Using the
Component Services tool, the first
step is to create a new empty appli-
cation by selecting that option
from the local menu of the COM+
Applications node in the tree and
following the prompts. Once the
application has been created, the
next step is to edit the applica-
tion’s properties to mark the appli-
cation as queued, as shown in
Figure 2. I also chose to enable
queue listening on this application
so that it would immediately play
any incoming messages on its
queue when it is active.

To install the server into the
COM+ application, I select New |
Component from the local menu of
the Component node of the applica-
tion in the tree. This invokes the
COM component install wizard,
using which I install a new compo-
nent using the defaults and select
the name of the COM+ server DLL
created earlier. After installation

unit TestImpl;
interface
uses Windows, ComObj, ActiveX, Srv_TLB, StdVcl;
type
TQTest = class(TAutoObject, IQTest)
protected
procedure SendText(const Value: WideString; Time: TDateTime); safecall;

end;
implementation
uses ComServ, SysUtils;
procedure TQTest.SendText(const Value: WideString; Time: TDateTime);
const
SFileName = 'c:\queue.txt';
SEntryFormat =
'Send time: %s'#13#10'Write time: %s'#13#10'Message: %s'#13#10#13#10;

var
F: THandle;
WriteStr: string;

begin
F := CreateFile(SFileName, GENERIC_WRITE, FILE_SHARE_READ, nil, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, 0);

if F = INVALID_HANDLE_VALUE then RaiseLastWin32Error;
try
FileSeek(F, 0, 2); // go to EOF
WriteStr :=
Format(SEntryFormat, [DateTimeToStr(Time), DateTimeToStr(Now), Value]);

FileWrite(F, WriteStr[1], Length(WriteStr));
finally
CloseHandle(F);

end;
end;
initialization
TAutoObjectFactory.Create(ComServer, TQTest, Class_QTest,
ciMultiInstance, tmApartment);

end.

➤ Listing 1

➤ Figure 2

62 The Delphi Magazine Issue 55

into the application, I edit the prop-
erties of the IQTest interface on
this object to support queuing as
shown in Figure 3.

Note that COM+ requires that
queuing be enabled on both the
COM+ application and at the
interface-level.

Creating A Client
The workflow for creating a
queued component client is identi-
cal to creating a client of any old
Automation client. In this case, I
created an application with a main
form as shown in Figure 4.

When the Sendbutton is pressed,
the contents of the edit are sent to
the server via its SendText method.
Listing 2 shows the code for this
form’s unit. The only element in
this unit that sets it apart from a
standard Automation controller is
the means by which it creates the
server object instance. Rather than
using, for example, the CoCreate-
Instance COM API, this client uses
the CoGetObject API. CoGetObject
enables an object to be created via
a moniker, and COM+ allows a spe-
cial string moniker syntax that can
be used to invoke components in a
queued manner. The syntax of this
moniker is queue:/new: followed by
the CLSID or program ID of the
server object. Listing 3 shows

examples of properly formatted
queue monikers.

There are also a number of
queue moniker parameters you
can incorporate into the string to
modify the destination queue or
queue behavior. These are listed in
Table 1. Using some of these
options, other valid queue moni-
kers might be as shown in Listing 4.

Running The Server
After invoking the client and typing
a few strings into the edit, you can
check for yourself on your hard
disk, and you will see that the file
c:\queue.txt isn’t present on your
hard disk. That is because the
server application needs to be
started running before queued
messages will be played back.

There are three ways to start the
server. First, manually, using the
Component Services tool. This can

be done simply by selecting Start
from the local menu of the
application node in the tree.

Second, you can start it
programatically, using the COM+
Administration Library API.

Lastly, you can schedule the
server start, using scripting. This
can be done using a script similar
to that shown in Listing 5 in the
task scheduler.

After starting the application,
you will see the c:\queue.txt file
present on your hard disk. Its
contents will look something like
the following:

Send time: 2/6/2000 7:15:08 AM
Write time: 2/6/2000 7:15:18 AM
Message: this is a test

unit Ctrl;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
BtnExit: TButton;
Edit: TEdit;
BtnSend: TButton;
procedure BtnExitClick(Sender: TObject);
procedure BtnSendClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
FIntf: IQTest;

end;
var ControlForm: TControlForm;
implementation
{$R *.DFM}
uses ComObj, ActiveX;
// Need to import CoGetObject because import in ActiveX unit is incorrect
function MyCoGetObject(pszName: PWideChar; pBindOptions: PBindOpts; const iid:
TIID; out ppv): HResult; stdcall; external 'ole32.dll' name 'CoGetObject';

procedure TControlForm.BtnExitClick(Sender: TObject);
begin
Close;

end;
procedure TControlForm.BtnSendClick(Sender: TObject);
begin
FIntf.SendText(Edit.Text, Now);
Edit.Clear;

end;
procedure TControlForm.FormCreate(Sender: TObject);
const
SMoniker: PWideChar = 'queue:/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}';

begin
// Create object using a moniker that specifies queued creation
OleCheck(MyCoGetObject(SMoniker, nil, IQTest, FIntf));

end;
end.

➤ Above: Listing 2

queue:/new:Srv.IQTest
queue:/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}
queue:/new:64C576F0-C9A7-420A-9EAB-0BE98264BC9D

➤ Below: Listing 3

➤ Figure 3

➤ Figure 4

queue:Priority=6,ComputerName=foo/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}
queue:PathName=drevil\myqueue/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}

➤ Above: Listing 4 ➤ Below: Listing 5

dim cat
set cat = CreateObject(
"COMAdmin.COMAdminCatalog");

cat.StartApplication(
"YourApplication");

64 The Delphi Magazine Issue 55

Send time: 2/6/2000 7:15:10 AM
Write time: 2/6/2000 7:15:18 AM
Message: this is another

Summary
That about sums it up for the fun-
damentals of COM+ queued com-
ponent programming. Remember
that you need to specifically install

➤ Table1

Parameter Description Acceptable Values

ComputerName Specifies the computer name portion
of a queue path name. If not specified,
the ComputerName associated with the
configured application is used.

String name of computer containing queue.

QueueName Specifies the queue name. If not
specified, the queue name associated
with the configured application is used.

String name of queue on target server machine.

PathName Specifies the complete queue pathname.
If not specified, the queue path name
associated with the configured application
is used.

The queue path name must be formatted as
ComputerName\QueueName.

FormatName Specifies the queue format name. Format name of queue, eg,
DIRECT=9CA3600F-7E8F-11D2-88C5-00A0C90AB40E

AppSpecific An unsigned integer design for
application-specific use.

eg, AppSpecific=8675309

AuthLevel Specifies the message authentication level.
An authenticated message is digitally
signed and requires a certificate for the
user sending the message.

MQMSG_AUTH_LEVEL_NONE (0) or
MQMSG_AUTH_LEVEL_ALWAYS (1)

Delivery Specifies the message delivery option.
Ignored for transacted queues.

MQMSG_DELIVERY_EXPRESS (0) or
MQMSG_DELIVERY_RECOVERABLE (1)

EncryptAlgorithm Specifies the encryption algorithm to be
used by COM+ for the message.

CALG_RC2, CALG_RC4, or other integer value recognized
by COM+ as an acceptable EncryptAlgorithm.

HashAlgorithm Specifies a cryptographic hash function. CALG_MD2, CALG_MD4, CALG_MD5, CALG_SHA,
CALG_SHA1, CALG_MAC, CALG_SSL3_SHAMD5,
CALG_HMAC, CALG_TLS1PRF, or other integer value
recognized by COM+ as an acceptable HashAlgorithm.

Journal Specifies the COM+ queue message journal
option.

MQMSG_JOURNAL_NONE (0), MQMSG_DEADLETTER (1),
MQMSG_JOURNAL (2)

Label Specifies a message label string up to
MQ_MAX_MSG_LABEL_LEN characters

Any string.

MaxTimeToReachQueue Specifies a maximum time, in seconds, for
the message to reach the queue.

INFINITE, LONG_LIVED, or an integer value indicating a
specific number of seconds.

MaxTimeToReceive Specifies a maximum time, in seconds, for
the message to be received by the target
application.

INFINITE, LONG_LIVED, or an integer value indicating a
specific number of seconds.

Priority Specifies a message priority level, within
the MSMQ values permitted.

MQ_MIN_PRIORITY (0), Q_MAX_PRIORITY (7),
MQ_DEFAULT_PRIORITY (3), or any integer between 0
and 7.

PrivLevel Specifies the privacy level that is used to
encrypt messages.

MQMSG_PRIV_LEVEL_NONE, NONE,
MQMSG_PRIV_LEVEL_BODY, BODY,
MQMSG_PRIV_LEVEL_BODY_BASE, BODY_BASE,
MQMSG_PRIV_LEVEL_BODY_ENHANCED,
BODY_ENHANCED

Trace Specifies trace options, used in tracing
COM+ queue routing.

MQMSG_TRACE_NONE (0),
MQMSG_SEND_ROUTE_TO_REPORT_QUEUE (1)

Message Queuing Services when
you install Windows 2000 Server in
order to create a queue server.

Using the skills you have learned
in this article, you should now
be able to create your own queued
component applications and use
them as an aid to scaling your
environment, providing briefcase
access, providing fail-safety,
or load-levelling your server.

Components no longer need to be
jealous of data.

Steve Teixeira is the CTO of
DeVries Data Systems (www.
dvdata.com), a Silicon Valley
internet professional services
firm, and co-author of Delphi 5
Developer’s Guide. Email him at
steve@dvdata.com

	Queued Components: The Object Briefcase
	Why Queue Components?
	System Scalability
	Briefcase Model
	Fail-Safety
	Load Scheduling
	Creating A Server
	Creating A Client
	Running The Server
	Summary

